Motion-map constrained image reconstruction (MCIR): application to four-dimensional cone-beam computed tomography.

نویسندگان

  • Justin C Park
  • Jin Sung Kim
  • Sung Ho Park
  • Zhaowei Liu
  • Bongyong Song
  • William Y Song
چکیده

PURPOSE Utilization of respiratory correlated four-dimensional cone-beam computed tomography (4DCBCT) has enabled verification of internal target motion and volume immediately prior to treatment. However, with current standard CBCT scan, 4DCBCT poses challenge for reconstruction due to the fact that multiple phase binning leads to insufficient number of projection data to reconstruct and thus cause streaking artifacts. The purpose of this study is to develop a novel 4DCBCT reconstruction algorithm framework called motion-map constrained image reconstruction (MCIR), that allows reconstruction of high quality and high phase resolution 4DCBCT images with no more than the imaging dose as well as projections used in a standard free breathing 3DCBCT (FB-3DCBCT) scan. METHODS The unknown 4DCBCT volume at each phase was mathematically modeled as a combination of FB-3DCBCT and phase-specific update vector which has an associated motion-map matrix. The motion-map matrix, which is the key innovation of the MCIR algorithm, was defined as the matrix that distinguishes voxels that are moving from stationary ones. This 4DCBCT model was then reconstructed with compressed sensing (CS) reconstruction framework such that the voxels with high motion would be aggressively updated by the phase-wise sorted projections and the voxels with less motion would be minimally updated to preserve the FB-3DCBCT. To evaluate the performance of our proposed MCIR algorithm, we evaluated both numerical phantoms and a lung cancer patient. The results were then compared with the (1) clinical FB-3DCBCT reconstructed using the FDK, (2) 4DCBCT reconstructed using the FDK, and (3) 4DCBCT reconstructed using the well-known prior image constrained compressed sensing (PICCS). RESULTS Examination of the MCIR algorithm showed that high phase-resolved 4DCBCT with sets of up to 20 phases using a typical FB-3DCBCT scan could be reconstructed without compromising the image quality. Moreover, in comparison with other published algorithms, the image quality of the MCIR algorithm is shown to be excellent. CONCLUSIONS This work demonstrates the potential for providing high-quality 4DCBCT during on-line image-guided radiation therapy (IGRT), without increasing the imaging dose. The results showed that (at least) 20 phase images could be reconstructed using the same projections data, used to reconstruct a single FB-3DCBCT, without streak artifacts that are caused by insufficient projections.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artifact reduction techniques in Cone Beam Computed Tomography (CBCT) imaging modality

Introduction: Cone beam computed tomography (CBCT) was introduced and became more common based on its low cost, fast image procedure rate and low radiation dose compared to CT. This imaging modality improved diagnostic and treatment-planning procedures by providing three-dimensional information with greatly reduced level of radiation dose compared to 2D dental imaging modalitie...

متن کامل

Methods to evaluate the performance of kilovoltage cone-beam computed tomography in the three-dimensional reconstruction space

Background: Cone-beam computed tomography (CBCT) scanners for image-guided radiotherapy are in clinical use today, but there has been no consensus on uniform acceptance to verify the CBCT image quality yet. The present work proposed new methods to fully evaluate the performance of CBCT in its three-dimensional (3D) reconstruction space. Materials and Methods: Compared to the traditional methods...

متن کامل

Award Number : DAMD 17 - 03 - 1 - 0657 TITLE : Multiple Aperture Radiation Therapy ( MART ) for Breast Cancer

On-board imager (OBI) based cone-beam computed tomography (CBCT) has become available in radiotherapy clinics to accurately identify the target in the treatment position. However, due to the relatively slow gantry rotation (typically about 60 s for a full 360◦ scan) in acquiring the CBCT projection data, the patient’s respiratory motion causes serious problems such as blurring, doubling, streak...

متن کامل

Usability assessment of cone beam computed tomography with a full-fan mode bowtie filter compared to that with a half-fan mode bowtie filter

Background: In intensity modulated radiation therapy, cone beam computed tomography (CT) has been used to evaluate patients prior to treatment. This study conducted a comparative evaluation of the image reconstruction ability of the clinically used half-fan bowtie filter and the full-fan bowtie filter. Materals and Methods: A CT simulation marker was inserted inside a human phantom, and the pel...

متن کامل

Motion-compensated Image Reconstruction with Alternating Minimization

Cardiac computed tomography (CT) is important for its use in diagnosing heart disease. Motion artifacts are a significant issue for cardiac CT image reconstruction. Motioncompensated image reconstruction (MCIR) has the potential to overcome the drawbacks of conventional gated reconstruction methods by exploiting all the measurement data and using motion information. However, MCIR methods are co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 40 12  شماره 

صفحات  -

تاریخ انتشار 2013